A comparative genomics and reductive dehalogenase gene transcription study of two chloroethene-respiring bacteria, Dehalococcoides mccartyi strains MB and 11a
نویسندگان
چکیده
Genomes of two trichloroethene (TCE)-respiring Dehalococcoides (Dhc) mccartyi, strains MB and 11a, were sequenced to identify reductive dehalogenases (RDase) responsible for oraganohalide respiration. Transcription analyses were conducted to verify the roles of RDase subunit A genes (rdhA) in chloroethene respiration. Some interesting features of the strain MB draft genome include a large genome size, two CRISPR-cas type I systems, and 38 rdhA genes. Strain 11a has a stream-lined genome with 11 rdhA genes, of which nine are distinct. Quantitative real-time PCR transcription analysis of RDase gene transcripts showed that a single RDase gene, designated mbrA, was up-regulated upon exposure to TCE and no other RDase genes were considerably expressed in strain MB. A single RDase gene, designated vcrA, was up-regulated upon exposure to TCE and expressed at a steady level until all chloroethenes were completely dechlorinated to ethene at 147 h in strain 11a. Overall, this study reports the genomes of two distinct Dhc strains; both contain numerous uncharacterized RDase genes, but in each strain only one such gene was expressed highly during organohalide respiration.
منابع مشابه
Genomic characterization of three unique Dehalococcoides that respire on persistent polychlorinated biphenyls.
Fastidious anaerobic bacteria play critical roles in environmental bioremediation of halogenated compounds. However, their characterization and application have been largely impeded by difficulties in growing them in pure culture. Thus far, no pure culture has been reported to respire on the notorious polychlorinated biphenyls (PCBs), and functional genes responsible for PCB detoxification rema...
متن کاملThe MarR-Type Regulator Rdh2R Regulates rdh Gene Transcription in Dehalococcoides mccartyi Strain CBDB1.
Reductive dehalogenases are essential enzymes in organohalide respiration and consist of a catalytic subunit A and a membrane protein B, encoded by rdhAB genes. Thirty-two rdhAB genes exist in the genome of Dehalococcoides mccartyi strain CBDB1. To gain a first insight into the regulation of rdh operons, the control of gene expression of two rdhAB genes (cbdbA1453/cbdbA1452 and cbdbA1455/cbdbA1...
متن کاملFunctional characterization of reductive dehalogenases by using blue native polyacrylamide gel electrophoresis.
Dehalococcoides mccartyi strains are obligate organohalide-respiring bacteria harboring multiple distinct reductive dehalogenase (RDase) genes within their genomes. A major challenge is to identify substrates for the enzymes encoded by these RDase genes. We demonstrate an approach that involves blue native polyacrylamide gel electrophoresis (BN-PAGE) followed by enzyme activity assays with gel ...
متن کاملIdentity and Substrate Specificity of Reductive Dehalogenases Expressed in Dehalococcoides-Containing Enrichment Cultures Maintained on Different Chlorinated Ethenes.
Many reductive dehalogenases (RDases) have been identified in organohalide-respiring microorganisms, and yet their substrates, specific activities, and conditions for expression are not well understood. We tested whether RDase expression varied depending on the substrate-exposure history of reductive dechlorinating communities. For this purpose, we used the enrichment culture KB-1 maintained on...
متن کاملDevelopment of a fluorescence-activated cell sorting method coupled with whole genome amplification to analyze minority and trace Dehalococcoides genomes in microbial communities.
Dehalococcoides mccartyi are functionally important bacteria that catalyze the reductive dechlorination of chlorinated ethenes. However, these anaerobic bacteria are fastidious to isolate, making downstream genomic characterization challenging. In order to facilitate genomic analysis, a fluorescence-activated cell sorting (FACS) method was developed in this study to separate D. mccartyi cells f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2015